%
|

Report No. F-70-2
N71-159809

NASA CR116127

.COMBINED CONDUCTION, CONVECTION AND RADIATION
EFFECTS IN INTERNAL FLOWS - PARTICIPATING GASES

by

Richard S. Thorsen

Department of Mechanical Engineering

Prepared for the
Office of University Affairs
National Aeronautics and Space Administration

Under Research Grant NGL-33-016-067.

September 1970

Lo
al *

New York University
School of Engineering and Science
University Heights, New York, N.Y. 10453

o

=]




Report No, F=70-2

NEW YORK UNIVERSITY
New York, N. Y.

COMBINED CONDUCTION, CONVECTION AND RADIATION
EFFECTS IN INTERNAL FLOWS - PARTICIPATING GASES

by

Richard S. Thorsen

Associate Professor of Mechanical Engineering

Prepared for the Office of University Affairs
National Aeronautics and Space Administration
under Research Grant NGL-33-016-067.

September 1970




IT

ITY

Abstract

TABLE OF

CONTENTS

¢ & & e ° e

Acknowledgment . . o o &

Nomenclature

Introductioh

Analysis

.

LA L4 © [ *

e« o ® @ © @

Mathematical and Computational Details

Results

Conclusions .

Bibliography

Appendix A - Greens Function for Laminar

Appendix B - Derivation of Equation (17)

e e o © ©
® ® © @ o ¢

e o o e e

Tube Flow .

. e ¢ & e o e

Appendix C - Evaluation of Intégral in

Figures

Equation (29)

Page
ii
iii

iv

23
28

34
36
39

41

Ll

b7




ii.

ABSTRACT

A general formulation is presented for determining the gas and
surface temperature distributions for laminar‘flow in a circular tube.
The analysis allows for arbitrary wall heat generation and radiation
effects in the gas and at the tube surface. Though optically thin
radiation is considered for purposes of obtaining numerical results
with water vapor as the fluid, the analytical development is applicable
to more general radiation situations, any gas for which the relevant
properties are known, and to fluids with heat sources due to effects
other than radiation.

Numerical results are presented for a variety of parameters,
selected to demonstrate important qualitative trends. By comparing the
results with results obtained for non-participating gases (surface radi-
ation effects considered) it is found that for a prescribed wall heat
generation the non-participating gas solution represents a ﬁoor estimate
of the wall temperature distribution as well as the gas bulk temperature
variation. It is also demonstrated that introducing a so called "quasi-
one dimensional" approximation for the radiation term in the energy
equation simplifies the computational procedure without sacrificing

accuracy.
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NOMENCLATURE

Cross sectional area of tube wall
Radiosity

Specific heat at constant pressure

Tube inside diameter

Irradiation

Spectral intensity

Thermal conductivity of gas

Thermal conductivity of wall

Unit vector denoting pencil of radiation (fig. 2)
Tube length

Unit normal vector

Defined by eq. (54)

Defined by eq. (52)

Wall heat generation per unit inside area
Radiation heat flux vector

Radial coordinate

Tube inside radius, 4/2

General three-dimensional region

Surface of R or coordinate directed opposite to 2

Temperature
Axial velocity
Mass averaged velocity

Axisl coordinate

Thermal diffusivity

Dirac delta function

(fig.2)

iv.




Solution to Reduced Problem - also polar angle
Angle

Monochromatic (mass) absorption coefficient
Planck mean absorption coefficient

Frequency

Dummy variables ; also Q = density
Stefan-Boltzmann constant

Defined by eq. (53)

Monochromatic optical thickness, eq. (21)

T/Ti

Solid angle

Subscripts

e

i

W

Pertains to tube exit
Pertains to tube inlet

Pertains to tube wall




I. INTRODUCTION

General

Continuing efforts to develop high témperature engineering systems
has necessitated a careful study of the role of thermal radiation as a
mechanism for energy transport. In many of these systems, including
high temperature heat exchangers and nuclear reactors, gases are passed
through tubes, channels and annuli and the combined modes of conduction,
convection and radiation energy transfer must be considered,

In addition to the usual complications present‘in conduction~
convection problems (temperature dependence of properties, entrance region
effects and selection of an adequate turbulence model if the flow is not
laminar) severe additional difficulties arise when thermal radiation is
of importance. Basically, this is due to the absence of a simple pheno-
menoclogical law, analogous to the Fourier conduction law, to express
the divergence of the radiation heat flux vector in terms of temperature
in the energy equation. In a rigorous formulation of the radiation
effect the divergence of the radiation heat flux vector is expressed
in terms of the spectral intensity which in turn must satisfy the
transfer equation. The formal solution of the transfer equation then re-
lates the intensity to the gas and surface temperature distribution
provided a knowledge of the spectral absorption coefficient is available.

As discussed in greater detail below, implementation of this scheme
for relating the divergence of the radiation heat flux vector to the
temperature field depends strongly onAa suitable absorption coefficient
model, geometry and boundary conditions. .

A considerable amount of recent research L] has been directed toward

establishing suitable absorption coefficient models and some advances

* Numbers in brackets [ ] designate references in the Bibliography.




have been made in treating radiating gases in geometries other than
the infinite parallel plate channel (which is the simplest geometry
to treat). [,3,4,5] However, except for the investigation of Perlmutter,
Siegel and Keshock[6’7’8’9] and Thorsenllo] (which are'limited to
radiatively non-participating gases) Landram, et al [11] (wvhich is limited
to optically thin radiation and neglects the possibility of axial radiation)
and Cess[12] (which also neglects the possibility of axial radiation) the
influence of non—isothermal boundaries has not been considered. Yet in
many engineering applications, including high temperature heat exchangers
and gas cooled nuclear reactors, the boundary temperature is unknown
a~priori, though it is of critical importance from a structural design
viewPoinﬁ.

The importance of these applications and the conspicuous lack of
satisfactory analytic or experimental work dealing wiﬁh internal flow
of radiating gases subject to non-uniform boundary temperatures has
motivated the present study. It is also worth mentioning that not only
are isothermal walls infrequently encountered in practical high temperature
applications, they are also difficult to achieve in laboratory investigations
which seek experimental verification of radiating gas flow analyses. On
the other hand, controlled wall heat generation boundary conditions can be
achieved by electric current or electric arcs, for example. The results
of this work, therefore, not only have direct engineering applicability,
but can also serve as a base for fubture experimental research.

Review of Previous Work

To evaluate the specific applicability of the previous analyses
dealing with combined conduction, convection and radiation heat transfer

and their limitetions, a review of past investigations is presented.




Viskanta[lB’lh]

considered hydrodynamically fully-developed
laminar flow and slug flow between two parsllel, isothermal plates.
Assuming a gray gas and expanding the non-linear radiation terms in
a Taylor series the governing non-linear integro—differenfial equation
was redﬁced to a non-linear ordinary differential equation. Digital
computer solutions were then obtained for the temperature field and wall
heat flux as a function of optical thickness. Einstein [5] considered
slug flow in a ciféular, isothermal tube. Again, a gray gas was assumed,
Hottel's zonal method was used to evaluate the radiation term in the
energy equation.

It is to be emphasized that the analyses of both Viskanta and
'Finstein are restricted to isothermal boundaries and gray gases. Because
of the severe dependence of the spectral absorption coefficient on wave
number, a gray gas appproximation is not realistic and can lead to
severe errors in temperature distribtution and heaf flux calculations.
Quantitiative support demonstrating the inadequancy of the gray gas
approximation has been given by deSoto and Edwards[g]and deSoto[3].
These authors considered laminar flow ofCO2 in isothermal tubes. However,

[15,16]

Edwards' exponential band model was introduced to account for
non-gray gas behavior. It was demonstrated that errors arising from the
gray gas approximation could be on the order of 50%-100% in the estimate
of the wall radiation heat flux. Since the radiation heat flux was of

the same order of magnitude as the convection heat flux for the parameters
considered, this represents a sizeable error.

[2]

In reference deSoto and Edwards uncoupled the radiation effects
from the conduction and convection effects by assuming the gas bemperature
field a priori. The radiation heat flux vector , 33 , wag obtained by numerically

integrating the formal solution to the transfer equation. An important




L,
contribution of this investigation wag its justification for neglecting
axisl radiation under igothermal boundary conditions. This was done by
computing the radiation heat flux at the wall\on the basis of two different
a-priori temperature fields. First, the classical Graetz distribution[17]
was used to describe the axial and radial gas temperature variation. Then
it was assumed that the radial Graetz profile existing at the axial location
at which aI! ‘was to be calculated, prevailed throughout the entire tube.
Since there was no axial temperature variation in the gas or on the tube
wall for the second case, net axial radiation was preciuded. Numerical
results for the radiation contribution to the wall heat flux were in excel-
 lent agreement for the two cases, thereby justifying the neglect of axial
radiation for the problem considered in reference [2]. The validity of
this approximation was further confirmed by deSoto[3] for the coupled
conduction, convection and radiation problem. In éddition de Soto's re-
sults demonstrate that neglect of coupling effects between the three modes
of energy transfer can lead to errors in the temperatureprofiles and wall
heat fluxes on the order of twenty-five to fifty percent.

Further work involving isothermal walls was successfully undertaken
by Nichols (4] who considered turbulent, participating gas flow in a con-
centri¢ tube annulus, The results are, however, limited to situations
vhere radiation effects are inherently small compared to turbulent con-
vection.

Analyses undertaken for prescribed heat generation in channel
and tube walls were reported in the previously mentioned papers by
Perlmutter, Siegel and Keshack,[6’7’8’9} Thorsenjlﬂ’gl} and Liu and

Thorsen[gg} . All of these analyses are restricted to non-participating

gases and an & priori knowledge of the convection heat transfer coefficient




5.
is necessary to apply the methods of references {6,?38,9]6 In references
f10,3l,32].it is shown that such an & priori assumpﬁion of the convection
coefficient is unsound because of the coupling, through the non-linear
boundar& conditions, of the gas conduction and convection processes with
the wall radiation. For suitable parameters, it is shown in reference [10]
that the convection coefficient can actually become locally negative as
the tube exit is épproached. Since this could never be the case for a
prescribed uniform wall temperature boundary condition‘it would seem that
caution should be exercised in extfapolating uniform temperature boundary
condition results to situations where the boundaries will be at non-uniform
| temperatufes.

Recently Landram, Greif and Hebib L11]

analyzed hydrodynamically
established turbulent flow in a circular tube subjected to uniform wall
heat flux. Only the optically thin limit was considered and axial radia-
tion was neglected. Furthermore, the thermal entrance problem was neg-

[12]

lected. Finally, Cess and Tiwari have considered laminar thermally

develo?ed flow in an infinite parallel plate channel. Axial radiation
(18]

was neglected and a one-dimensional approximation was used for the

[19]

radistion term in the energy equation. Tien's and Lowder's correla-
tion for the total band absorptance was used and the effect of pressure
and path length were studied. Since the primary purpose of their investi-
gation was to establish a satisfactory method of handling non-gray gases
for a complete range of radistion path lengths their simplifying assump-
tions are justified. It is, however, noted that neither the work of
Landram, et al [11] or Cess and Tiwarl [12] give results congistent with

those of Thorsen [10] if the abgorption coefficient is allowed to approach

zero. This is because, for uniform wall heat generation the local wall




6.
heat flux to the gas (due to conduction and radiation) will not be uniform
since the non-isothermal tube (or chammel) wall elements can radiate to
each other and the tube (or channel) ends. The importance of this effect
would appear to depend on the optical thickness of the gas.

Present Work

In the present investigation a general approach is presented for
treating combined mode heat transfer. Specific application is made to a
circular tube of finite length with uniform wall heat generation. However,
the basic features of the solution technique are applicéble to other geo-
metries and arbitrarily prescribed wall heat generations or temperature
‘distributions. Simplifying assumptions, made to reduce the complexity
of the calculations required, do not preclude the applicability of the
basic techniques to less restrictive situations. Furthermore, a basis
for most of the simplifying assumptions can be found in the results of
this and other authors. Thus, for example, results are obtained only for
hydrodynamically developed flows in tubes having black surfaces. Both of
these restrictions shall be qualitatively justified.

The question of the importance of axial radiation is studied, the
importance of gas participation is demonstrated and both wall and gas
temperature distributions for a variety of flow and thermal conditions

are established when the gas is taken to be optically thin water wvapor.




IT. ANALYSIS

The Gag Temperature Field

The problem to be considered is depicted in Fig. 1. Gas is assumed
to enter the passage with a fully developed velocity profile and a uniform
temperature Ti' Neglecting compressibility effects and viscous dissipation
and further assuming steady flow, it is necessary to consider only the energy

equation for the gas in the form [18]

u g% = V.oVT - v.‘EiR/pCP . | (1)
For turbulent flow, O in equation (1) must be replaced by (o + eH) .
The divergence of the radiation heat flux vector appearing in equation (1)
cannot be related to the local gas temperature by a simple phenomenological
law as in thé case of thermal conduction, However, as discussed in detail
below, the radiation term in equation (1) can be related to integrals of
the spectral ihtensity, which in turn must satisfy the Radiative Transfer
equation. »The solution to this equation depends, in a non-linear manner,
on the temperature field through the Planck function, the surface temperatures
and the gas absorption coefficient. For the present discussion, however, it
is sufficient to recognize that the divergence of the radiation heat flux
vector depends in a complicated, non-linear manner on the entire temperature
field. Then in anticipation of an iterative scheme for solving equation (1)
the radiation term shall be treated as a known function of the space coordinates.
Thus, if T represents the nth iterated temperature at a point and T (x,r)
represents the (n-1)st iterated temperature field, equation (1) can be

written as

u(r) —i—f = V.00 T + g{T" (x,r)} , (2)




where, for compactness,

el (x,r)} = - v (3)

has been intrbduceda It is to be emphasized thst é is considered to be g
known function of position in equation (2) through the (n-1)st iterated
temperature field.

As a final restriction, axial conduction in the gas will be neglected.
Then, if x is interpreted as a time-like variable, equation (2) is analogous
to the transient heat conduction equation with spatially dependent properties
(density and thermal conductivity) and heat source. However, before pursuing
this analogy it will be necessary to specify initial and boundary conditions.

The initial (inlet) condition, as already mentioned, is

T(o,r) = T, (%)

whereas the boundary condition at the tube surface will be taken as
T(x,r ) = T (x) (5)

In equation (5) Tw(x) can be arbitrary. For the problem at hand, the wall
heat generation and not the wall temperature (or heat flux) is prescribed.
Tw(x) will actually be determined from the boundary condition derived below.
However, for the present, only the gas temperature field in terms of an
arbitrary surface temperature is desired. Continuing, symmetry at the tube

centerline dictates that
(3r/or),._, = © (6)

Returning to the analogy between equation (2) and the conduction
equation it is recognized that if u and O were constant the solution
techniques for determining T(x,r)} could be found in several sources, e.g.,

[23,247. Though this is not the case when u and & depend on r, it will




now be shown that the Green's function approach presented in these references
can be modified and extended to the problem at hand.

A Green's function, G(x,r é?,p) is defined to satisfy

u(p)g%+Voa (P)VvG=58,x>FE (72)
G=0, x<E (Tv)
G=0 at P =1 (Tc)
%Ei:o at p =0 (7d)v
Paralleling the procedure for constant coefficients, the expression

(8)
I:fR G(V-avT) dR dE - f IX Gu %g dF dR
Ro

is considered. In order to continue the Green's function formulation, an
extended form of Green's identity must be derived. This is done in a manner
similar to the derivation of Green's identity for the case of «a =1, pre-
sented in [21). The generalized result is

N

ow ov '
. - N/ = -
Rﬂvvaw w v vv]dR §Sa[v& w&ﬂ a8 (9)
vhere v and w are arbitrary scalar functions and n is the outward
directed normal on S . Applying equation (9) to (8) then results in

X oT rx oG
G(V.awT - u <=) dR &€ = T(V.aWG + u =) dR d&F
L fR 3 L XR 3

: XR[uGT]::}; aR + LX §g alo ! g%] as ar

(10)
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Introducing equations (2), (4), (5), (6) and (7e-7d) results in the solution

for the temperature field, viz.,

b X BG ‘
T = -L j’R GedRar - jRu[GTg=O 7, aR +L §SaT $E asae (11)

Details of all the manipulations leading to equation (11) along with the
derivation of equation (9) are presented in Appendix A of Ref.[_33].

It is noteé that neither the restriction of tangential symmetry nor
uniform inlet temperature is required to derive equation (11). Furthermore,
it is applicable to channels and annuli as well as tubes provided axial
conduction is neglected. However, for the problem under consideration, i.e.,

a circular tube, equation (11) can be written as

T(x,r) - - en Lx Lro G(X.rl £,0) g(€,0)p dp o
r X a (12)
- 2n T, I © u(p)c(x,r|o,0) pdo + 2n réz(ro) L TW(E)(§g>p=r. ar

o)

Since the eddy diffusivity at the wall will be zero even for turbulent flow,

a(ro) appearing in (13) will be equal to the molecular thermal diffusivity.
The formalism leading to equation (12) would be of little value

unless the Green's function could be determined. Using generalized transform

theory it can be shown, ss is done in[?@) for constant coefficients, that

the form of G 1is

) 5
G(x,r | £,0) = E}ﬁAk e Pk (x-2) Rk(r) Rk(p) (13)
k=0

However, the eigenvelue problem for ak and Rk requires a second order

ordinary differential equation with variable coefficients to be solved.




11.

These variable coefficients which arise from u(r) and o(r) meke this
a formidable problem and asymptotic methods are generally required for
solution. Fortunately, asn alternate approach, which exploits solutions
to related problems in the heat transfer literature, can be applied.

A reduced problem is introduced:

u(r) g% = V@V T (1ka)
Ti(r) = 1 (1l+b)v
Tw(x) = 0 (1ke)

For laminar flow in a circular tube this is referred to as the "Graetz

Pfdblaﬂ'[ 1ﬂ. However, since turbulent flow is also to be considered and
because the procedure presented here is applicable to channels and ennuli,
(14a - 1bc) shall be consistently referred to as the Reduced Problem. The

solution to the Reduced Problem is

®© _
8(x,r) =z B, e-Bi x R, (r) - (15)
k=0
Bk’ Bk and Rk have been established for a variety of flow situations
including flows in tubes [ 17 7, channels [17 7 and annuli [ 25,26] . To obtain
the Ak's in (13) the solution given by equation (12) is applied to the
Reduced Problem resulting in

e(x,r) = - 2n jro u(p) G(x,rl 0,p) pdp ° (16)
)

When equation (13) is substituted into equation (16) and the results compared

termwise with equation (15) the desired Ak's can be determined. The

integrals of the eigenfunctions which arise in this procedure are evaluated

in Appendix A where the coefficients, Ak , are evaluated for laminar flow




iz2.
in a circular tube.
To strengthen the reader's confidence in equation (12), it will
be.put in an élternate form. Integrating the last térm in (12) by parts

and employing equations (13), (15) and (16) leads

r
T(x,r) = T, + L" [1-6(x-g,r)] aT_ - 21 L"L ° gGodods (17)

The complete details leadingbto equation (17) are presented for reference
in Appendix B.

In the absence of gas radiation or internal heat generation (g = 0)
equation (17) is identical to equation (33) of [17] . The present approach,
however, has the added generality of including heat generation or, as explained
earlier, radiation in the gas.

It is clear from equation (17) that if g ﬁere'known and the surface
temperature variation were prescribed, T(x,r) could be computed. However,
when the wall heat generation is prescribed these quantities are determined
by coupling between equation‘(lY) and the energy equation for the tube

surface.

Energy Equation for the Tube Wall

Assuming the outer surface of the tube to be perfectly insulated
and the wall to be sufficiently thin to permit neglecting radial temperature
gradients the first law of thermodynamics for a differential ring at x (see

Fig. 1) leads to

k A d2T

W 1 a
< g T mg;§ + q(x) + H(x) = B(x) + k (S%Drmrﬁ (18)
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In the last eguation H(x) and B(x) represent the local irradiation and
radiosity of the tube inside surface at x and can be expressed as
integrals of the spectral intensity, which generally depends on the entire
temperature field. Equations (17) and (18) represent a coupled integro-
differential equation system which will generally require an iterative
scheme for solution. It is to be emphasized that when the wall temperature
is known equation (17) completely describes the gas temperature field for

a given absorption coefficient model. However, when the surface heat
generation is prescribed then equation (18) is also required.

With the restrictions of (a) tangential symmetry, (b) hydrodynamically
developed flow (¢) uniform inlet temperature and (d) negligibly small axial
gas conduction equations (17) and (18) represent an equation system for the
gas and wall temperature distributions provided suitable end conditions
are imposed on the wall temperature. (These conditions will be discussed
below). In order to apply this rather general formulation the details of
the gas/wall radiation processes must be specified so that the radiation
source term, g, the irradiation H and radiosity B can be prescribed

in terms of the temperature field.

The Radiation Field

Knowledge of the local monochromatic intensity, I,, , is sufficient
to determine g, H and B in equati ons (17) and (18). The intensity must

satisfy the equation of radiative transfer,
- .

£-VI, = ?Ky(IbV - 1,) .. (19)

The formal solution to eq. (19) is

; L,(s ) -7
Iy = I,(8,)e Lols) L ! 8 (20)




1k,

S
2;(3) = j fijdS (21)

o]
m%
and in Fig. 2 the definitions of t and & are clarified.

Following the development of ref. [20] , the source term, g, is given

by

©

-’
V-qR o1
?Cp ?Cp 2 =0

g(x,r) = - ‘L P (TyoTy,) dudy (22)
k18

The definitions of H and B resgpectively result in

H(x) = [- j J) 1,,1.?1 dwdv] (23)
=0 W=2n S+S
-% ¥ W
and 1.n<0 (o)
o -+ - _ )
B(x) = | | Iy4.n dwd?|
v=0 :gﬁ S—’SW
£ .1>0

Clearly the evaluation of g, H and B is a rather formidable task and
requires complete knowledge of the spectral absorption coefficient, Kz) R
which depends strongly on 2/ and on temperature.

Before proceeding with simplificatiqns which will facilitate the
evaluation of g, H and B some qualitative obsefvations are in order. The
results of ref. [10] for non-participating gases indicate that the wall
and gas temperature distributions are relatively insensitive to surface
absorptivity (except near the tube ends). Thus the wall is taken to be
black and 11/(8%) in eq. (20) becomes Ib'L’(TW>' The first term in
eq. (20) represents energy radiated by the wall that is partially attenu-
ated by gas absorption before it reaches point (x, r). In general this
term depends on the wall temperature aﬁd gas temperature along s, through

¥, . The second term in eq. (20) represents energy emitted by the
gas along & that is then partially sttenusted before reasching (xyr),
‘Again this term depends on the gas ﬁémperaﬁure along s. When I, from

eq. (20) is substituted into eq. (22) it becomes clear that g can be
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looked upon as a known function of the temperature field, thus con-

firming the validity of the iterative scheme alluded to in eq. (2).

Optically Thin Radiation

The essential mathematical features of combined conduction,
convection and radiation can be preserved while achieving computa-
tional simplifigations by considering the case of optically thin
radiation. Furthermore, since axial radiation effects are known to
be small in the gas (see Introduction), it is only the non-isothermal
wall of the present investigation that can give rise to axial radia-
tion effects. In the case of optically thin radiation the wall con-
tribution to the radiation will be most pronounced and therefore
represents a good case for establishing whether or not axial radiation
is ever important.

The optically thin case is achieved by assuming that for all

frequencies and all directions 2;,<< 1l . Recognize  that

-7
e” 21 -2+ 0(2) ' (25)
Substituting eq. (20) into eq. (22) the expression for g, correct

to order ’Z'v, is

g(x,r) = r_é;ﬂ,,.o mey I,(8,) dwdy- 4fupow4} (26)

It is observed that the source term behaves as if all the radi-
ant energy arriving at (x,r) came directly from the solid boundaries,
unattenuated by interlayer absorption and that the gas does not radiate

to itself.
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When the order of integration in eq. (26) is reversed and the black wall

assumption introduced there results
1 b B W -
g(x,r) = ?—C;{jwzun[g}cm (7,7, )oT (8, )/x| do - bpK ot } (27)

In eq. (27) RPM(T,TW) is the modified Planck mean absorption coefficient
(see ref. [18]). Cess and Mighdoll[?’o] have shown that the modified Planck

mean absorption coefficient can be very accurately approximated by

T
Kpy (T,T,) = ¥p (7)) 5" (28)

Equation (27) can thus be further simplified to read

g(x,r) = %—C'—I—)-Uw:hjgg ;{P(Tw)oT5(sW)/nT(x,r)] dw - h?){PUT”} (29)

Physically, there are three distinct contributions to the integral in eq.
(26). These arise from the tube wall and the two tube ends., The tube ends
shall be taken as black surfaces at the inlet and exit gas bulk temperatures
respectively. In an approximate manner these inlet and exit conditions
correspond to inlet and exit headers. Furthermore, it is noted that the
exit gas bulk temperature is a priori unknown since not all of the energy
generated in the wall actually enters the gas while it is passing through
the tube; some energy is radiated out the ends of the tube and can result
in pre- or post-heating of the gas. This, however, is of no concern in the
analysis. The details of evaluating the integral in eq. (29) are quite
substantial and are presented in Appendix C. Only the result is presented

here, viz.,

L 5 ‘ i
+ =9 o~ 2a
' L 5 N ams as f
(30)
> ' 5 hoK_(T)
+ ()T B Eh) ()T F(L"”mx*,fr)} R

C
P

L
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Tn eq. (30) ¥ =1/d, x"=x/d and rt = r/ro . The superscript

"+"  will be dropped in subsequent equations, where it shall be understood
that the dimensionless space variables are being used. A , B and k are
defined in Appendix C and shall not be repeated here. They depend only on
location. K and E are the complete elliptic integrals of the first and
second kind respectively. F(x,r) is the shape factor between a differential
area element, with normal parallel to the tube axis, and a circular area,

of diameter d , normal to the tube axis and located at the tube inlet.

The mathematical description of the gas temperature field is now
completed by substituting eq. (30) into eq. (17) and introducing the Green's
function given by eq. (13) and the Graetz solution given by eq. (15). The
céefficients An and Cn are given in Appendix A and ref. [17] respectively.
It now remains to establish the expressions for H(x) and B(x) appearing
in the energy equation for the tube wall, eq. (18).

The genefal expression for the radiosity is given by eq._(eh). For

the case of a black surface, however, this reduces to
ol
B(x) = oT }(x) (31)

Evaluation of the local irradiation, H(x) , is not near so trivial. In fact,
it will be evaluated by two different methods utilizing two different assumptions.

Evaluation of H(x) , Method 1. The first method for evaluating the

irradiation at the tube wall is based on an oversimplified interpretation of
eq. (26). This interpretation, however, simplifies the evaluation of H(x)
vhile still permitting an estimation of the importance of axial radiation
effects on the gas and wall temperature solutions. Physically, the inter-
pretation of the solution, eq. (20), to the Transfer Equation reveals that

-
the intensity at a point P , having direction 4 (see fig. 2), is equal to
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the intensity at Sw ; 1.e., at the wall, attenusted by interlayer gas
absorption plus a contribution (the integral in eq. (20)) due to gas
emission which is then also attenuated. Now, comparing egs. (22) and

(26) implies that I, =~ 1 (SW) , i.e., at any point the intensity is just
equal to the intensity associated with the radiation leaving the wall.
Thus, for purposes of evaluating H(x) it would appear reasonable to treat
the intervening gas as non-participating. Then, as shown in eq. (20) of

ref. [33]
b

i

L
FH(x) + on) FH(Lox) 4] onH(RK(x8) ag (32)

0

H(x) = oT

Expressions for F'(x) , the shape factor between a ring at x (see Fig. 1)
and a circﬁlar disk at the tube entrance and for K(x,E) , the shape factor
between differential rings at x and E , are given by egs. (35) and (36)
of ref. [33].

Together with auxilliary equations for G , 6 , g , B and H [egs. (13),
(15), (30), (31) and (32) respectively], equations (17) and 618) represent
a coupled integro-differential equation system for the entire temperature
field.The numerical iterative scheme used to solve these equations is
described below. In the gréphical results, discussed below, solutions to
this equation system are shown as broken lines.

Considerable simplification in the evaluation of eq. (29) could have been
achieved by making what shall be called the "quasi-one-dimensional” assumption.
This assumption consists of replacing T(SW) in eq. (29) by TW(X) , X
being the axial position at which g(x,r) is to be evaluated., It then

clearly follows from eq. (C-1) that

2
g(x,r) = %% {x[e-r(x,2) - B(Lox,m)] ¥p(T)T)

. hott_(T)
+ nF(x,r)}cP(Ti)Tg + nF(L=x,r)KP(Te)Tz} - —-(-j-i:—-—— Tu (33)




19.

where x and r are dimensionless and F isg defined in Appendix C.
Results obtained for Tw(x) and T(x,r) using eq. (33) rather than
eq. (30) for g(x,r) reveal that the error introduced by the quasi-
one-dimensional assumption is undetectable in the graphs presented, the
error always being less than 1%.

Evaluation of H(x) , Method 2. Evaluation of H(x) by Method 1 ,

though simpler thap Method 2, has been presented only to establish the
accuracy of the quasi-one-dimensional approximation for g . However, it
introduces a fundamental error into the formulation, i.e., the solution
obtained is in violation of the First Law of Thermodynamics. This is
evident frqm an examination of results (not presented here). It was found
fhat the sum of the energy radiated out the tube ends and the energy added
to the gas was greater than the energy generated in the tube wall. The
magnitude of this error depended upon the tube diameter, length to diameter
ratio and level of wall heat generation. TFor the cases stud?ed it varied
from 1% to 10% of the wall heat generation.

The physical explanation for this error is as follows. A non-zero
radiation source term, g , implies that the gas is absorbing radiant energy.
Thus, when a wall element radiates, its energy cannot reach the other wall
elements and tube ends unattenuated. Though eq. (26) for g is correct to
order 23,, it cannot be concluded that I, = IV(SW) as on page 18. This
point is also made in chapter 7 of ref. [18]. The expression for I, ,
correct to order 7, , must be obtained independent of eq. (26). Equation

(20), correct to order 2,,, becomes

SW
Ty=T8,) [1- B8 )] +| 'pHy, T, as (34)

O

Employing egs. (23) and (34) results in H(x) being composed of three terms,

H(x) = Il(x) - IE(X) + Ig(x) (35)
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where
Il(x) »= jv jwzgﬂ Iy(sw) cosodwd v (36)
Ie(x) = j J , <K, s, I7(Sw) cos6 dwdp (37)
Y T =2n
Sy
IB(X) = L jw=2ﬂ L eX,, I,,d8 cose dedw (38)

Here 6 1is the angle between § - and the normal vector of the receiving
wall element. In eq. (37) ¥, is defined by the relation

SW
¥y -‘j?}g‘;j‘o [ ¥yas (39)

and will be further discussed below.
Il(X) represents radiation leaving a wall element and arriving

unattenuated at a receiving element. Evaluation of eq. (36) would there-

fore result in the right hand side of eq. (32), i.e.,
by by Loy |
Il(x) = of,F (x) + oT F (L-x) + cTW(g) k(x,8) dE (ko)
(e}

The quasi-one-dimensional assumption is now employed in the evaluation of
Ig(x) . In the quasi-one-dimensional case the radial temperature distri-
bution at x (O¢r<l, dimensionless r), is assumed to exist at all axial

positions. Thus, eq. (37) becomes

IQ(X) = Jyg%ly[l‘w(x)} wagn 8, cose dndw (h1)

The inner integral evaluates as wd . Thus, applying the approximation
given by eq. (28) for the modified Planck mean absorption coefficient,

results in
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5
?KP(TW)G Tw y
I(x) = —E— . a (42)

T, in eqa. (k2) is the temperature at which ¥, is to be evaluated. It

is clear from the definition of -Rz, that determination of Tm is no
trivial matter. ¥For the case of the symmetric parallel plate channel,

¥*
S.T. Liu has evaluated the appropriate mean temperature, Tm . His result,

applied to the tube, becomes

(%) = g 11 (13)

0 Tlx,r5 dr

It is interesting to note that Ig(x) is directly proportional to
da , a point that will be discussed further when the results are presented.

Performing the frequency integration in eq. (38) results in

L
IS X
IB(X) I I v SLQEEEESE— cos6 dS dw (4h)

Tt
W=21t O

13(X) has also been evaluated for the parallel plate channel. However,

5
L‘- << KP(TW)TW ()45)

T
m

KP(T)T

except near the wall, and the contribution to the inner integral in eq.

(44) from gas near the wall will be small compared to I, since only a

2
small fraction of § = contributes to the integral in eq. (4L4) vhereas eq.

(41) has S, @s a factor. This qualitative argument has been confirmed

by Liu's numerical results. Thus H(x) can reasonably be approximated by

# Thisg result, not yet published, was obtained by S.T. Liu at New York University

in connection with work on his Ph.D. dissertation. It will be incorporated
into his dissertation which is expected to be avalilable by February 1971.
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5 r 15
) Lo, K (T Jo T

H(x) = o7, F*(x) + O‘Tl:; FH(Tex) + [ mf* K(x,8)de - — T W g (16)
- ej ¥ EN

m
O

It is noted that if & hot gas were being cocled thisg argument would not
apply since the inequality expressed in (45) would be revefsed.

The term in eq. (18) accounting for conduction to the gas at the
tube wall can be determined by evaluating the radial derivative of eq.
(17) at the tube wall, i.e.,

+

dT x x 3G
kS - = - kj; sr(x“g,ro) T, - arkj JO © g(8,¢) >
(o]

(@)

< agdg  (47)

r=r
o}

Substituting equations (31), (46) and (47) into eq. (18) results in

1 4 T
5 )~ *a"(x) + 0Ty F(x) + oT F*(L-x) +

2
() L)+ el o[ ot )s -

X ol
e [ [T a5, &

T

5
¥ (T )oT X
o Sy a- kj 6_(x-8,1) ar
W Tm A W

geree

o o© r=
(48)
In equation (48) dimensionless space variables are being used. G, g , T, »
Ft and K have been previously defined and discussed and
® -2 2
Op(x:8, 1) = B C, Ry (1) exp| —po" (x-8) | - (49)

The complete analytic formulation of combined conduction, convection
and optically thin radiastion for laminar tube flow with prescribed wall heat
generation is contained in eqs. (17) and (48) along with the auxiliary
equations for G ;, 8 , g , Tm and geometric factors. The details leading
to determination of T(xjf} are deseribed in the next chapter., Readers

not interested in these details can skip to Chapter IV where the results are

presented and discussed.
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ITT. MATHEMATICAL AND COMPUTATIONAL DETATLS

The solution of equations (17) and (47) is a formidable
computational task. However, by careful examination of these
two equations, it will be shown that much of the téchnique
established for the non-participating gas case can be used for
the participating gas case. The first order of business,
however, will be to put eqs. (17) and (47) into dimensionless

form. Introducing

Vo= T/ (50)
q,, = %;&1' q(x) ax (51)
e () (52
v - (s, )Y (53)
Noo=oq, /KTy (54)
E = o @ (55)
Udpy :
G = (arpe) G = (20 r2) o (56)
£(x)s a(x)/a,, (57)
results in
§(x,r) = 1 f [lm@(}{mggr‘)]d‘kwm(é?ﬂ)(g) ml E(é,e)a‘(x,r[g,?)gdgdg
(58)

and




2k,

o
d ww o * dww by Uy L
P ax2 Ni) Op(x-8,1) —r d& = @Ll“?xy(Tw) <"‘§’";nm)d_}ww
L (59)
- ?ﬂ J Y K(x,8)dE& - S(x)
(e}
where
T TN : X ol 3G
S(x) = £(x) + 2 FH(x) « ¥ F(Lx) ] v 2x | | B(B.5) $2 5 dgas
[0) [e] Ir=

(60)
When equations (59) and (60) are compared with eq. (30) of

ref. [33] or eqs. (26) and (28) of ref. [31] for the case of
a black surface, 1t is noted that the difference between the
wall energy equation for the present case and the non-participating
case 1s contalned in the factor in brackets multiplying 2&W§
in eq. (59) and the integral in eq. (60). 1In terms of the
computational algorithm for solving the wall energy equation
these changes are relatively minor.

In broad terms the solution technique proceeds as follows:
Step 1. 1Initial values for V{(x,r) and ww(x) , referred to
as { (x,r) and w&(x) , are estimated. w&(x) is determined

from the non-participating gas solution (see ref. [33]). Then
" (x,r) 1is determined from eq. (58) with g = O .

Step 2. Based on { (x,r) g(x,r) 1s determined.

Step 3. ¢e is evaluated from the definition of bulk temperature,
il.e.,
. >
b, =2 j (I,e)[1-r“] r dr (61)
o)

Step 4. The integral in eq. (60), which shall be referred to

as V(x) , is evaluated based on g(x,r) from Step 2 and L
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from Step 3. Also, the last term in eq. (58), referred to

henceforth as W(x,r) , is evaluated based on Steps 2 and 3.

Step 5. A new is computed using substantially the same
e w ‘

numerical iterative scheme described in Appendix D of ref. [33].

Step 6. A new y(x,r) is determined from eq. (58) and com-
pared with ¢ (x,r) obtained in Step 1. The answer was
accepted when |y(x,r) - ¢ (x,r)| < .01 at every point. (A
finite difference grid of 21 axial points including the ends
and 11 radial points was used.) If |v(x,r) - ¢ (x,r)] > .01
at any one of the 231 points then V{(x,r) and {(x,1) replaced
¥ (x,r) and w%(x) in Step 1 and Steps 2 through 6 repeated.
The radiation source term, g(x,r) , is evaluated in
Appendix C and the final ekpression is given by eq. (30). It
was treated as a subroutine in the computer program where
Simpson's rule was used for evaluation of the integral in eq.
(30). V(x) and W(x,r) , which require additional integration
for their evaluation merit further discussion. Introducing
the Greens function given by eq. (13) with coefficients given

in Appendix A, and recognizing that Bi = 2R§/?e results in

2

o -2\
V(x) = 2.84606 £ (-1)" Ai/g jx exp [ Pen (X~§)]
n-0 (o}
1 (62)
L E(5,¢) R, () ¢dgds
and
.\ ® X fm?kg -
Wx,r) = - 3.99 (8) = AR (r) | exp [pg (x-8)
(63)
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Here, use has been made of the relation between An and C‘n

in Appendix A, along with the numerical values of and

n
Rﬂ(l) given in reg. [17], to arrive at
K RU(1) = (-1)7 2.84606 r/3 (64)
and
An = - 3.999 )\n (65)
where _ _ D
An = 2u rg Al’l (66)

(see eq. (56)).

It is noted that in both eq. (62) and eq. (63) the term

1
J; € (5,9) R (e) gdgds (67)

has to be evaluated and that evaluation of V(x) and W(x,r)
are of roughly equal complexity.

Infinite sums appear in several terms of the governing
equations. V(x) , W(x,r) and the integrals involving ©
and 6, in egs. (58) and (59) all contain infinite sums. The

first six terms were found to give sufficient accuracy.

Numerical Constants. The constants Xn 5 Cn and the eigen-

functions R are now presented for completeness. An and C

n n

are given in ref. [17] as

Ao = 2.704 (68)
Ay = 6.679 (69)
A, = Moo %, , n> 1 (70)
¢, = (-1)" 2.84606 r~%/3 (71)

CrA(1) = 2.02552 x;i/g (72)




Numerical values were obtained for Rn(r) for n

a7 .

= 0,1,...5 .

at r = 0,.1,...,1 by solving the eigenfunction problem for

Rn .[35} Because these values were not available in the

literature they are presented in Table T .

Rg

1
.0750
-.3213
. 2897
-. 0474

-.2055

-1973
L1041

-.2087
-.1955

TABLE I
Eigenfunctions for Circular Tube ~ Laminar Flow
r RO Ry Ro R3 Ry
0 1 1 1 11
.1 .9818 .8922 .7358 .5313 .3025
.2 .9289 .6060 .1532 -.2327 -.4026
.3 .845% 2360 -.31%7 -.359%  .0002
4 7380 -.1073 -.3924%  .0674  ,2992
.5 o144 -.3406 -.1435  .3151 -.0793
.6 4829 -.4321  ,1686 1149 -.2554
T .3508 -.3991 .3312 -.1955 .0356
8 2240 -.2874  ,3036 -.2924 .2501
.9 .1064% -.1451  .1643 -,1785 .1887
1.0 ~-.,0003 -.0046  ,0021 -.0013 .0008

-.0006
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IV,  RESULTS
Examination of eqs. (58) and (59) reveals that a large number of

parameters enter the solution to the problem considered in this report,
Since it is not the purpose of this report to present & complete parametric
study of the factors influencing the gquantitative aspects of the solution,
the influence of some factors shall be ignored. In particular, conduction
effects in the tube wall shall be neglected., This corresponds to setting
P= 0, It is shown in refs. [31, 33], for the non-participating case, that
over a practical range of values the influence of P is small and doe; not
alter the qualitative aspects of the solution. It should, however, be noted
that where P is non-zero it is necessary to prescribe +two boundary condi-
tions at the tube ends. In refs. {31, 33] either the conditions
ed=0 , x=0,1L

dx
= Ti

d Tw

or T (0) and —gx =0 at x=1

0, it is necessary only to pre-

were used. In the present work, with P
scrive T (0) = 1.

It was also shown that the influence of the Peclet number, Pe, on
the qualitative aspects of the results was also small. Therefore in the
present case a single Peclet number of 1740 was considered. This corres-
ponds to a Reynolds number of approximately 2000 when the properties of
water vapor are evaluated at 1hOO°F. It was arbitrarily decided to evalu-
ate all gas properties at lhOOOF and one atmosphere. The selection of
lhOOOF was based on preliminary numerical results indicating an average
gas bulk temperature of approxim tely 1400°F for the range of parameters
studied. One exception to this was Plénck mean absorption coefficient
which was treated as a temperature dependent guantity. The data for the
Planck sbsorption coefficient was tsken from fig. 3 of ref. E361 .

As previously mentioned the tube wall emissivity was taken as unity

and hydrodynemically developed flow was considered. Some justification for
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this last sssumption comesg from the results for non-participating gases
given in refs. 131; 3§X . There, all other things being egual, the results
for the following two caseg are compared. In one case there is an abrupt
entrance into the tube and it is assumed that the gas immediately becomes
hydrodynamically developed as in the present case. In the second case a
long unheated hydrodynamic entrance section is provided prior to the tube
section having wall heat generation. Of course in this case the gas will
indeed have a fully developed velocity profile at the start of the heating
section., When the resultant wall temperature distributions for the two
cases are compared it is found that within a few diameters downstream of
the entrance to the heated section of tube the results are almost identical.
It can therefore be concluded that the assumption of hydrodynamically de-
veloped flow at the tube entrance does not deteriorate the validity of the
present solution for the tube wall temperatures.

The results to be presented and discussed below are based on a uni-
form inlet temperature of 1000°R. This temperature was selected because
it is the lowest value for which Planck absorption coefficient data was
readily available. Higher values of Ti were not investigated because it
was desired to have resultant wall temperatures within the realm of prac-
ticality. ¢"(x) was also selected to yield reasonable wall temperatures.
In ref.[33] uniform, sinusoidal and step-uniform wall heat generation
were studied. In the present work the thrust of atitention is focused on
the effect of gas participation. Therefore, there appeared to be no a
priori reason for considering anything other than uniform heat generation.
In eq. (60) f(x) was therefore taken as unity. Merely by prescribing
guitable values for ‘f(x), other than uniform heat generation could be
congidered. In the results presented in thisg report numerical values for
q" were 40,000 and 60,000 BTU/hr-rt°- °F.

The two remaining gquantities to be prescribed are L/d and d. The
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numerical Tormulatlion weas such that for a glven axisl increment in the
finite difference scheme, the gtorags space regulired was proportional to
(L/d)g. Reasonable values of L/d were considered but results are pre-
sented only for L/d = 20. Representative cases for L/d = 4O were in-
vestigated, but complete production runs providing results suitable for
complete comparison with L/d = 20 were not sought. It was found that
while L/d certainly influenced the numerical results, just as for the
non-participating gas case (see refs. [31, 3i} ), no interesting éualita~
tive differences, dependent on IL/d, were exhibited. As mentioned below
eq. (43), and shown in eq. (46), it is reasonable to expect the solution

1

to depend explicitly on d. Three valuesof & were considered (1",
1/2" and 1/4").
In the graphical (figs. 4-7) and tebular (Tables 3 and 4) results

to follow the appropriate parsmeters are given in Table 2.

TABLE IT

Numerical Values Associated with Prescribed

Constants Leading to Results

9" (BTU/hr-£t°-°F) d (inches)
Case 1 40,000 1
Case 2 40,000 1/2
Case 3 60,000 1/4

In each case T, = 1000°R, IL/d = 20, Pe = 1740, €=1 and P =0 and
the gas is water vapor with properties other than the absorption coefficient

evaluated at 1860°R.
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The results based on the numerical constants discussed above and
in Table II are presented in Figs. 4 = 7. These results were obtained
on a Univac 1108 computer. In the figures the dashed curves correspond
to the non-participating gas solution obtained as described in ref. [33] .
The broken curves represent the optically thin solution with H evaluted
by method 1, i.e., eq. (32) and the solid curves represent the solution
obtained using method 2, eq. (46).

It is noted in Figs b - 6 that the wall temperature distribution
for the optically thin case behaves qualitatively like that of the non-
participating gas, ie., it rises rapidly in the entrance region, reaches
a maximum at an interior point and then declineg as the tube exit is
approached. The decline is due to end "losses", i.e., a net radiant
energy exchange from the tube wall to the exit header. In Fig. 4 the gas
bulk temperature variation is also shown. As expected the gas temperature
is‘considerably higher in the non-participating case.

When Figs. 4 - 6 are compared the effect of d is revealed. It is
noted that the solid and broken curves becomes progressively closer
to each other as d decreases. This merely confirms, as previously indicated,
that the difference between method 1 and method 2 for evaluating H(x)
depends on d as can be seen by comparing egs. (32) and (46).

The accuracy of the gquasi-one dimensional approximation is shown
in Table III where method 1 was used to evaluate H(x). Results for Tw/Ti
when g is evaluated using eq. (30) (general) and eq. (33) (quasi-one
dimensional) reveal that the difference occurs in the third decimal place,
i.e., the two wall temperature distributions are within 10°R of each other.
Hence, the quasi-one dimensional approximation appears to be quite satisfactory.

In Pig. 7 the radial gas temperature variation for case 1 is shown
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for three axial positions., Of interest is the reversal in slope as the
wall is approached when x/d = 20, This rvesult can be explained by noting
that the heat conducted to the gas depends on the slope of the wall temperature
(see eq. (b7)).

Though not shown in the graphs because of its limited applicebility,
a Nusselt number can be defined and evaluated. Let g(x) represent the
heat transferred to the gas at x (note: q(x) # q"(x)). a(x) can be evaluted

from the relation

ax) = — & (13)
where m is the mass flow rate and T, is the local bulk temperature. The

b

a heat transfer coefficient, h, can be defined as

a(x) .
h(x) = Tw(x) - Tb(x) (r4)

Defining a Nusselt number by

Nu = hd/k (75)

then results in

Pe d
Mo = " (76)

h<¢%v" spb) dx

Whereas in the case of a non-participating gas it can be expected that Nu

is bounded by the Nusselt number results for the isothermal wall and uniform
heat flux wall in the absence of all radiation effects (see refs. [31,33} ),
no such statement can be made for the present case since two parallel mechanisus,

conduction and radiation, exist for transferring energy to the gas.
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TABLE III

Effect of Quasi One-Dimensional Approximation on Wall Temperature
Distribution. H Evaluated from Eq. (32) (CASE 1)

T w/'r:.L T W/'1"i

x/d (g From Eq. (30) (g From Eq. (33))
0 1.000 1.00
2 4,256 4.256
L 4,958 L.959
6 5.325 5.328
8 5.537 5.541
10 5.651 5.657
12 5.689 5.695
1k 5.645 5.651
16 5.483 - 5.490
18 5,101 | 5.107

20 4,008 Lk, 10k
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V. CORCLUSIONS

A genersl mathewsticel approsch has been presented for handling
combined conduction, convection and rediation gas flow problemsﬁ This
technique which exploits the Greens function method for pai&bolic equations
results in equations (17) and (18) which are not restricted to optically
thin gases. To arrive at eq. (17) it was necessary to

(1) Neglect axial conduction effects in the gas

(2) Consider hydrodynamically developed flow

(3) 1limit consideration to flows having uniform inlet temperatures.

It has been shown (see ref. [33] ) that the error introduced by the
second restriction is small. The third restriction is not serious since eq. (1l)
instead of eq. (17) could have been employed. To obtain g, B and H a radiation
model must be introduced and in the present work the optically thin gas has
been considered. It is noted that if the wall temperature, rather than heat
generation, is prescribed eq. (18) is not necessary and the difficulty in
evaluating H(x) (see pages 17 - 22) will not be encountered.

It can also be concluded from the present work that the quasi one-
dimensional approximation for g(x,r) leads to computational simplifications
without sacrificing accuracy.

Lagtly it is noted that the mathemstical technique presented here is
applicable to turbulent flow and non-circular passages provided the solution
to the reduced problem is known. Furthermore the Greens function approach
is applicable to combined conduction-radiation problems in radiating media
other than gases. In the transient heating of a plastic slab, for example,
the governing equation is the Heat Eguation with & gpatially dependent

source term. The time variable would then correspond to x in the present work.
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Recommendations

Several unanswered tquestions regarding problems of the class
considered still remain. Some of these represent details in the writer's
view; however, others are more fundamental. In the first category are:

(1) the effect of non-black surfaces

(2) establishment of correct T, for tube problems

(3) evaluation of I for tube problems

(4) consideration of participating gases that are not optically thin.

A more fundamental question is the importance of the axial conduction
effect, Though this effect is likely to be overshadowed by radiation effects,
it is important tc note that'the solution technique presented here would not

be applicable because the governing gas equation would become elliptic.
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39.

APPENDIX A. GREENS FUNCTION FOR LAMINAR TUBE FLOW

For leminar flow in a circular tube, the governing equation (1ha)

can be written as [17],

o7 _ 1 1 9 + OT
T T T e (a-1)
+ +__X
where r* =r/r and x = Fr,

The solution to the reduced problem can be written in two ways, viz.,

[} . 2 "+
6 = Z c e b Rn(r“") (A-2)
n=0
or
_ ool ‘
6 = - 2ur_ J (l—§?) G(x*,r*‘o,?) 2nedy (A-3)
o

Substituting equation (13) into (A-3) results in

+Y = - (o9 + -
Yoocpe RGN = (FrD) )JAae U RGY) L (1-§) ®(¢) a3
n=0 n=0

(A-k)
However, the separation equation for R is (see [17])
rt Rn" + R; * xir+ (l-r*g) R, =0 (a-5)
Rearranging (A-5) leads to
- (1 - x%) xR =£-2- = (et R) (4-6)
n

Substituting (A-6) into (A-4) and performing the indicated integration

leads to




Lo.

= + b 2+ '
NP S 1 - R (1)
Z ce M R (r*) = (2u ri) 2_ A e Ly R, (rt) ng (A-7)
Nmo n=0 7\11
Thus
A, = o C_/[20 x° R (1)] (A-8)

1
¢, and R (1) are given in reference [17]. A is thus evaluated as

_ b x6%3 5 P/5r (e/3)T (w3 \, = on (4-9)
0

A =
n : 22/3 (%a ri)
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APPENDIX B. DERIVATION OF EQUATION (17)

Since the integral containing g remains unchanged in going from
equation (12) to equation (17), it is necessary only to prove the equiv-
alence of the last two terms of equation (12) and the first two terms on

the right hand side of (17). To this end consider

u(r) g% = % g% r %% (B-1)
T(o,r) = T, (B-2)
T(x,r,) = T, (x) (B-3)
-with
2
u(r) = 2u ri [l —Q§9 :] (B-L4)
o
The Green's function solution to this problem (eq.12)) is written as
r, x
T(x,r) = -2n T, l u(e) G(x,rlo,?)gdg +oan T G'L Tw(g) <§%> _ dE

(o]

(B-5)

The dimensionless variables rt = r/rO and x* =,x/Pero are now intro-

duced, resulting in
T(x*,r*)/Ti = - [(2ﬁ)(2§ ri)]-{il (l—§?) G(x+,r+|o,?)gd§
xt X
[ o] @, o

Clearly, the first term on the right hand side of (B-6) is the solution to

the Graetz or Reduced Problem. Thus
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of ot Y . s foT
(%t r") = a(x", ) + 2x(2u »

Ay f% rh VS _/1” s . s
) Jo Llw@m‘cij \E?ﬁ 4§ (B-7)

It will now be proven that

e (5-6)

w2
2uro

A new function ¢ is introduced which satisfies eq. (B-1) together with Ty=0 and
T.,=1 . Clearly 6 =1 - ¢ . From eq. (12)

A+

X X
e _ — 2 G
¢ = ox o E[ (B?)gv:ro a€ = (2x)(2u ro) jo (5§;+>?+=1 ag (3-9)
Now define f(x*, &, rt) such' that
@), - @) HGED o o
§= %o

It will be shown that f is equal to zero. Integrating (B-10) with respect

to &+ Dbetween &t =0 and & = x* results in

xt oG _ (11 } +
j; (5?)(,:1 % = <2n><2{{ r§>[¢(°’r+) ZCar) _—
o
+ ’ £(x*, B r+) g8
J
o

from (B-9) and the fact that ¢(o,r™) = 0 it follows that

x*t

I £(x", et rt) dE = 0 (B-12)
.
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Since this is true for all =x* , it follows that f(x*,B*,r*) is
identically zero and that
- (B #eE - ()(
2n/\yz 2 og+ T \2n

2u r
o : o

)l E: xt) <§i+>q+=l (8-13)

Substituting eq. (B-8) into eq. (B-7) results in

. X
2m)fr, = o(xr) + 2] [n(0/n,] REBE) ag (B-14)
‘ )

The superscript "+" has been dropped for convenience but the independent
variables in (B-14) and below are still dimensionless, Letting T, =1
(or alternately considering T to be T/Ti) and integrating (B-14) by

‘parts results in

* aT
T(x,r) = 6(x,r) + T (x)-6(0,r) - T _(0)-6(x,7) j o(x-8,v) gz 4 (B-15)
o g
But 6(o,r) = 1 . Hence (B-15) can be written as
* dr
T(x,r) = 6(x,r) + Tw(o) - Tw(o) o(x,r) + J [1-6(x-E,r)] aj; ag (B-16)
- o
Furthermore,
o(x,r) + Tw(o) - TW(0)~9(x,r) =1+ [l-e(x,r)]'[TW(o)—l] . (B-17)
Then, from the definition of the Stieltjes integral
x .
T(x,r) = 1 + .[ 1 - e(x-8,r)] dT, (B-18)

o
QquDo




Ll

APPENDIX C Evaluation of Integral in Eguation 29.

First it is recognized that 1/[«xT (x,r) ] can be taken outside the
integral sign in eq. (29). Furthermore, because of the assumed isothermal
nature of the tube ends, the integral is considered as three terms, i.e., re-

ferring to the integral in eq. (29) as J (x,r),

=1 5 -
J(x,r)-ﬁ{i)z[?“P(Tw)cT (84) Jawr QK (T, YoT2u0, + P (T ) 0T, (c-1)
(Wtowy ~we)
Here o and w, are the solid angles, with vertices at P, subtended by areas
Ai and Ae respectively (see fig. 3). The evaluation of Wy and Wy is

quite simple. Consider a differential area element, dA, located at point P
with normals ng and n, parallel to the tube axis. Further, imagine a
sphere of unit radius with center at P. The solid angle @y intercepts an

area on this unit sphere which shall be called ai (now shown in fig. 3).

From the definition of a solid angle

W = ay (c-2)
The shape factor between dA and Ai’ denoted as FdA"Ai is

FdA'*Ai = ai/Qﬁ (c=3)
thus, from (C-2) and (C-3)

w, = 2n FdAﬂbAi (c-4t)
Similarly

w, = 2t Fgp, A (c-5)
Fortunately these shape factors have been evaluated. Thus s which

Faasa,
shall be called F(x,r), is (see ref [18] )

r2 - 1 + bx? (C-6)
ru+l+l6x2+8x2(r2+l) - or?

F(x,r) =

ol
o




Ly,

and

FﬂA~§A€ = F (L-x, 1) (c-7)
Equations (C-6) and (C-7) are written in terms of dimensionless variables,

i. e., x =(dimensional x)d and r = {@imensional I])/I“O.

The integral appearing in (C-1) is now evaluated. First it is
noted that circumferentisl symmetry exists in the problem. In addition it

follows from the solid angle definition that

dw = co8 G_é..__dAT (c-8)

S
W

where 8, dAT and S are shown in fig. 3.
W

ahy = r df d € (c-9)

where ¢ is the azmuthal angle, varying from O to 2x. It is also a relatively

gimple matter to show that

2 2 2 2 .
s, = [(%~B)" + ¢~ + r,” - 2r r_ sin 8] (Cc-10)
and
r -r sin ¢
0
cos 8 = \ (c-11)
J(XEE)Q + r2 ¢ rS - 2rr_ sin g

where dimensional variables are being used.
Introducing dimensionless coordinstes, denoting the integral in (C-1) as

I(%,r) and using equations (C-8) through (C-11) results in

L 2n
, _, e T5 (! - 8in é)dfédg C=-12
I(x,r) J; v P( W)G W(g) J‘o [h(x=€)2+r2+lm2r sin ¢]3/é ( |

The inner integral in (C-12) will now be evaluated. Denoting this inner
integral as II (x, E, 1),

25 25

roege o[ a4 T sing df (c-13)
Hoegr) jﬁo [ - B sing ]2 rj@ A - B sing)¥?
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Using the periodicity of the sine function (C-13) can be written as
/2 n/2

a ¢ .2 sing dg (C-11)
-n/2 [A + Bsiné]g/z ’ j;ﬁ/Q fA + Bsin¢]3/2

II(x,85) = 2

In (C-13) and (C-1L)

2

A h(x-g)2+r + 1 (C-15)

B = 2r (Cc-16)
The two integrals in (C-14) are quite difficult to evaluate and all of the

algebra will not be presented. However, employing the substitution

l-8in @
o = arcsin 5 s (C-17)

considerable patience and formulas 2.575.1 and 2.584.40 of ref. [34]

finélly results in

(h-28)E(k) 2 K(x)
TT(x8r) = (a-B) JarB | | B JATB (c-18)

K(k) and E(k) are the complete elliptic integrals of the first and second

kind respectively. The argument k is defined by

k = JaB/ (A + B) ' (c-19)

Combining (C-18), (C-12), (C-5), (C-4) and (C-1) with eq (29)then results in

eq. (30).
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Ly,

Interpretation of Curves in Figures 4 - 7

Won-participating Gas Solution

Optically Thin Gas Solution

H evaluated from eq.

(32)

Opticelly Thin Gas Solution
H evaluated from Eq. (46)

L/a Pe T,

(°R)
e 17ko 1000
20 17h0 1000
20 17ho 1000
20 17k0 1000

q'"Av d
(BTU/hr-£t2)  (inches)
40,000 1
40,000 1/2
60,000 1/h
40,000 1
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Figure 1. Diagram of Problem Under Consideration
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Figure 2.

Geometry Associated with Spectral Intensity.



Figure'3.

Geometry for Evaluation of Source Term, g .
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